Sorption of phenanthrene and atrazine by plant cuticular fractions.

نویسنده

  • Benny Chefetz
چکیده

Several studies have shown selective preservation of plant cuticular materials in soils. However, very little is known about their function as sorbents for the hydrophobic organic contaminants (HOCs) in the soil. In this study, we investigated the sorption and desorption of phenanthrene and atrazine by cuticular fractions of pepper (bulk, dewaxed, nonsaponifiable, and nonhydrolyzable) to better understand the sorptive activity of cuticular matter in soils. The bulk and dewaxed cuticles exhibited carbon-normalized distribution coefficients (Koc) for phenanthrene and atrazine in the range of that reported for soil humic substances, although both samples were rich in aliphatic structures. No hysteresis was observed in the desorption isotherms of either solute. The nonhydrolyzable residue exhibited a very high Koc value for atrazine, whereas the nonsaponifiable sample be exhibited the lowest Koc value for both sorbates. Based on solubility parameter data, it is suggested that the nonsponifiable sample be considered an intermediate between the physical and chemical mixture of pectin and cutan/lignin-like fractions, whereas the dewaxed cuticle is a chemical blending of cutin and pectin. The n-hexane-normalized sorption data suggest that the pepper cuticle can interact specifically with atrazine. This study leads to the conclusion that the contribution of aliphatic-rich plant biopolymers to the sorption of HOCs can be significant because of their preservation and accumulation in soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competitive sorption-desorption behavior of triazine herbicides with plant cuticular fractions.

Sorption interactions of plant cuticular matter with organic compounds are not yet fully understood. The objective of this study was to examine the competitive sorption-desorption interactions of the triazine herbicides (atrazine and ametryn) with cuticular fractions isolated from tomato fruits and leaves of Agave americana. The 13C NMR data suggest a rubber-like nature for the cutin. This biop...

متن کامل

Insights into the sorption properties of cutin and cutan biopolymers.

Plant cuticles have been reported as highly efficient sorbents for organic compounds. The objective of this study was to elucidate the sorption and desorption behavior of polar and nonpolar organic compounds with the major structural components of the plant cuticle: the biopolymers cutin and cutan. The sorption affinity values of the studied compounds followed the order: phenanthrene > atrazine...

متن کامل

Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility.

In both forest and agricultural soils, plant derived cuticular materials can constitute a significant part of soil organic matter. In this study, the sorption of nonpolar (naphthalene and phenanthrene) and polar (phenol and 1-naphthol) aromatic organic pollutants to aliphatic-rich cuticularfractions of green pepper (Capsicum annuum) (i.e., bulk (PC1), dewaxed (PC2), nonsaponifiable (PC3), nonsa...

متن کامل

Sorption of 1-naphthol by plant cuticular fractions.

The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment, but sorption mechanism is still not fully understood. In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction. Towa...

متن کامل

Partitioning of phenanthrene by root cell walls and cell wall fractions of wheat (Triticum aestivum L.).

Plant cells have been reported to play an important role in the uptake of organic contaminants. This study was undertaken to provide an insight into the role of the root cell walls and their subfractions on sorption of phenanthrene to roots of wheat (Triticum aestivum L.). Root cell walls were isolated and further sequentially fractioned by removing pectin, hemicellulose one, and hemicellulose ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental toxicology and chemistry

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2003